Düzlemde sabit bir
noktadan eşit uzaklıktaki noktalar kümesine çember
denir.
O noktasından r uzaklıktaki
noktalar kümesi, O merkezli ve r yarıçaplı
çemberdir. |
 |
Çember üzerindeki iki noktayı
birleştiren doğru parçasına kiriş denir. [CD] kirişi
gibi.
En uzun kiriş merkezden geçen kiriştir.
O merkezinden geçen [AB] kirişine çemberin çapı
denir.
Çemberi iki noktada kesen doğrulara
kesen denir. d2 doğrusu çemberi K ve L noktalarında
kestiğine göre, kesendir.
Çemberi bir noktada kesen doğruya teğet
denir. d1 doğrusu çemberi T noktasında kestiğinden
teğettir.
Çemberin merkezindeki
360° lik açı çember yayının tamamını görür.
Çember yayının açısal değeri 360°
dir. |
 |
Çap çember yayını iki
eşit parçaya ayırır. Her bir parça 180° dir. |
 |
1. Merkez Açı
Köşesi çemberin
merkezinde olan açıya merkez açı denir. Bir merkez açının ölçüsü gördüğü yayın ölçüsüne
eşittir.
|
 |
2. Çevre Açı
Köşesi çemberin
üzerinde, kenarları bu çemberin kirişleri
olan açıya çevre açı denir. Çevre
açının ölçüsü, gördüğü
yayın ölçüsünün yarısına
eşittir.
|
 |
Aynı yayı gören çevre
açının ölçüsü merkez açının ölçüsünün
yarısıdır.
|
 |
Aynı yayı gören çevre
açıların ölçüleri eşittir.
m(BAC) = m(BEC) =
m(BDC) |
 |
Çapı gören çevre
açının ölçüsü 90° dir.
m(AEB) = m(ACB) = m(ADB) =
90° |
 |
3. Teğet - kiriş açı
Köşesi çember üzerinde,
kollarından biri çemberin teğeti, diğeri çemberin kirişi
olan açıya, teğet - kiriş açı denir.
Teğet - kiriş açının ölçüsü,
gördüğü yayın ölçüsünün yarısına eşittir.
|
 |
- Aynı yayı gören teğet-kiriş açı
ile çevre açının ölçüleri eşittir.
m(ABT) = m(ATC) = a
|
 |
4. İç Açı
Bir çemberde kesişen farklı iki
kirişin oluşturduğu açıya iç açı denir.
İç açının ölçüsü gördüğü yayların
ölçüleri toplamının yarısına eşittir.
|
 |
5. Dış Açı
İki kesenin, iki
teğetin veya bir teğetle bir kesenin
oluşturduğu açıya, çemberin bir
dış açısı denir. |
 |
Bir dış açının ölçüsü, gördüğü yayların
ölçüleri farkının yarısına eşittir.
APB açısı AB ve CD yaylarını gördüğüne
göre,
[PB kesen,
|
 |
[PC teğet
m(AC) = y
m(CA) = x
dersek

Burada, x + y = 360°
olduğundan,
|
 |
- O merkezli yarım
çemberde,
m(APC) = a
m(AB) = b
|
 |
6. Kirişler Dörtgeni
Kenarları bir çemberin kirişleri
olan dörtgene kirişler dörtgeni denir.
Bir kirişler dörtgeninde
karşılıklı açılar bütünlerdir.
m(A)+m(C)=180°
m(B)+m(D)=180° |
|
 |
Karşılıklı açılarının ölçüleri toplamı
180 olan bütün dörtgenlerin köşelerinden bir çember
geçer.
- Kesişen iki çemberde oluşan
ABEF ve BCDE dörtgenlerinde
m(ABE)=m(CDF)
m(AFD)=m(CBE)
m(ABE)+m(CBE)=180° olduğundan,
|
 |
|
Hiç yorum yok:
Yorum Gönder