22 Şubat 2013 Cuma

Açıortay ders notu


  • ÜÇGENDE AÇIORTAY BAĞINTILARI
1. Açıortay
Herhangi bir açının ölçüsünü iki eş açıya bölen ışınlara açıortay denir.
Yandaki şekilde AOB açısını iki eş açıya ayıran [OC ışınına açıortay denir.
Açıortay üzerindeki herhangi bir noktadan açının kenarlarına çizilen dik uzunluklar eşittir.
AOB bir açı,
[OC açıortay
m(AOC) = m(COB)
|AC| = |CB|
AOC ve BOC eş
üçgenler olduğundan
|OA| = |OB|
2. İç Açıortay Bağıntısı
ABC üçgeninde [AN] açıortay ABN ve ANC üçgenlerinin
[BC] tabanına göre, yükseklikleri eşit olduğundan
olur .....(1)

ABN üçgeninde [AB] kenarına ait yükseklik ANC üçgeninde [AC] kenarına ait yüksekliğe eşittir.
olur .....(2)
[AN] açıortay olmak şartıyla bu iki alan oranını birleştirirsek; (1) ve (2) den
olur

ABC üçgeninde [AN] açıortay olmak şartıyla
Buradan ve b.y=c.x eşitlikleri de elde edilir.
3. İç Açıortay Uzunluğu
ABC üçgeninde A köşesinden çizdiğimiz açıortay
uzunluğuna nA dersek
4. Dış Açıortay Bağıntısı
ABC üçgeninde [AD], A köşesine ait dış açıortaydır.
5. Dış Açıortay Uzunluğu
ABC üçgeninde [AD] dış açıortayının uzunluğuna
n'A dersek
6. İç açıortayla dış açıortay arasındaki açı
m(DAE)=90°

ABC üçgeninde [AD] iç açıortayı ile [AE] dış açıortayı arasındaki açı için
2a + 2b = 180°
a + b = 90° dir.
[DA] ^ [AE]
  • Bir üçgende iç açıortayların kesim noktası iç teğet çemberin merkezidir.
P noktasının kenarlara uzaklığı eşittir. Merkezden indirilen dikmeler iç teğet çemberin yarıçapı olur.

Hiç yorum yok:

Yorum Gönder